欢迎访问润滑与密封官方网站!

咨询热线:020-32385313 32385312 RSS EMAIL-ALERT
基于遗传算法改进的BP神经网络模型的磨损机理智能识别
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家高技术研究发展计划(863计划)(2011AA110202);武汉理工大学自主创新研究基金项目.


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    通过提取磨粒形状特征参数、颜色特征参数和表面纹理等特征参数对磨粒形态进行量化表征,并以此为输入矢量,引入遗传算法(GA)改进BP神经网络对磨粒进行自动分类识别,建立遗传算法改进的BP神经网络模型,并给出具体的算法实现过程。分别应用遗传算法改进的BP神经网络模型和未引入遗传算法改进的BP神经网络模型对磨粒图像进行智能识别。实验结果表明,遗传算法改进的BP神经网络综合了遗传算法的全局优化和BP算法局部搜索速度快的特点,网络识别率较高,具有较好的全局性。

    Abstract:

    A improved back propagation(BP) neural network by Genetic algorithm was introduced to realize the automatic classification and recognition of wear debris, based on the qualitative characterization of the morphological features of the wear debris making use of the characteristic parameters of wear debris shape, color, and surface texture. A neural network model based on the improved back propagation (BP) neural network by Genetic algorithm was established to classify and recognize the wear debris using those parameters as the input vectors. The algorithm of the established model was detailed. By comparing the results of automatic recognizing the wear debris by the improved BP neural network and the presented BP neural network, it shows that the improved back propagation (BP) neural network combines the global optimization feature of genetic algorithm and the fast speed feature in local search of BP algorithm, which has a high recognition rate and better global search feature.

    参考文献
    相似文献
    引证文献
引用本文

盛晨兴,程俊,李文明,段志和,马奔奔.基于遗传算法改进的BP神经网络模型的磨损机理智能识别[J].润滑与密封,2014,39(1):24-28.
.[J]. Lubrication Engineering,2014,39(1):24-28.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2014-09-22
  • 出版日期: