欢迎访问润滑与密封官方网站!

咨询热线:020-32385313 32385312 RSS EMAIL-ALERT
碳纳米管/丁腈橡胶复合材料力学及摩擦性能的分子动力学模拟*
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

辽宁省自然科学基金指导计划项目(20180550640);辽宁省教育厅项目(LJ2020018)


Molecular Dynamics Simulation of Mechanical and Friction Molecular Dynamics Simulation of Mechanical and Friction Properties of CNTs/NBR Composites
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    采用分子动力学模拟技术,从分子水平研究碳纳米管(CNTs)增强丁腈橡胶(NBR)复合材料的力学性能及摩擦学性能。运用恒应变法计算材料的力学性能,分别建立纯NBR和CNTs/NBR复合材料的3层模型,并对顶层和底层的铁摩擦副施加剪切载荷,研究材料的摩擦学性能。研究结果表明:在摩擦过程中,由于CNTs表面存在很强的吸附力,抑制了NBR分子链的迁移率,使得CNTs和聚合物分子链间的相互作用增强;CNTs/NBR复合材料具有更高的致密性以及更强的结构,从而表现出了比纯NBR更加优异的力学和摩擦学性能。

    Abstract:

    The mechanical and tribological properties of CNTs reinforced nitrile butadiene rubber (NBR) composites were studied at molecular level by molecular dynamics simulation.The mechanical properties of materials were calculated by constant strain variation method.Three-layer models of pure NBR and CNTs/NBR composites were established respectively,and shear loads were applied to the iron friction pairs at the top and bottom layers to study the tribological properties of the materials.The results show that in the process of friction,due to the strong adsorption capacity on the surface of CNTs,the migration rate of NBR molecular chain is inhibited,and the interaction between CNTs and polymer molecular chain is enhanced.CNTs/NBR composites have higher density and stronger structure,which shows more excellent mechanical and tribological properties compared with pure NBR.

    参考文献
    相似文献
    引证文献
引用本文

唐黎明,王新楠,纪平,何恩球.碳纳米管/丁腈橡胶复合材料力学及摩擦性能的分子动力学模拟*[J].润滑与密封,2022,47(8):21-26.
TANG Liming, WANG Xinnan, JI Ping, HE Enqiu. Molecular Dynamics Simulation of Mechanical and Friction Molecular Dynamics Simulation of Mechanical and Friction Properties of CNTs/NBR Composites[J]. Lubrication Engineering,2022,47(8):21-26.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-01-10
  • 出版日期: 2022-08-15